Introduction

The goal of the BIONIC project is to gain insight into the biological processes associated with mood and health, with a focus on Major Depressive Disorder (MDD).

- Genetically complex heterogeneous phenotype
- $H^2 \sim 40$, but difficulty finding significant SNPs
- Minimal phenotyping not ideal (Cai et al. 2018)
- Wray et al. 2018: 44 risk variants
- Howard et al. 2019: 102 risk variants
- BUT… SNP-h^2 remains the same

LIDAS

LifeTime Depression Assessment Self-report

Newly developed online MDD-questionnaire based on the widely used Composite International Diagnostic Interview (CIDI) that assesses lifetime MDD diagnosis according to DSM-V criteria. Validity assessment (Bot et al. 2016):

- Sensitivity and specificity analyses
- Cases = 177, controls = 87
- Sensitivity: 85%
- Specificity: 80%
- Feasibility analysis n = 245
- Prevalence of 20.8%

A promising tool for rapid determination of lifetime MDD status in large samples, as is needed in genomics studies.

Methods and Prelim. Results

MDD prevalence in the Dutch population was determined based on the official DSM-V criteria in $n = 19.919$. Biological and lifestyle variables were measured to determine and compare prevalence between several demographic groups using chi-squared analyses. Heritability was estimated using the Netherlands Twin Register pedigree, $n = 267.683$ (Boomsma et al. 2018).

Prevalence and heritability meta-analysis

- Lifetime prevalence = 19.89%
- $H^2 \sim .29$
- PRS = 1.46% (Fedko, 2019)

Future Steps

The next steps in the BIONIC project involve:

- Investigating whether this form of phenotyping leads to increased power
- Performing a GWA-meta analysis in the BIONIC cohorts
- Estimating the SNP-h^2

Acknowledgements:

BBMRI-NL Rainbow project Phenomics 2.0 - proof of principle for major depressive disorder (RP-12)