Introduction

- Metabolomics twin and family studies report medium-to-high heritability (h²) estimates (e.g., Kettunen et al. 2012; Draisma et al. 2013; Shin et al. 2014).
- Metabolomics GWAS report associations with explained variances which can exceed 10% (Kastenmüller et al. 2015).
- Previously, Rhee et al. (2016) investigated the contribution of common & rare variants to overall SNP h².
- Aim: Estimate both narrow-sense & SNP h² for 4 metabolomics platforms measured in NTR blood samples.

Results

- Narrow-sense and SNP h² for each of the platforms in Fig.1-4.
- Comparison with Rhee et al. in Fig.5.
- 78/94 metabolites fall within C.I. of Rhee et al. estimates.

Methods & statistics

- Participants: selection of twins and family members of NTR participating in Biobank Project.
- Samples: fasting blood samples.
- MS Platforms: Biocrates [N~1,077; M~145] & Lipidomics [N~2,248; M~131].
- NMR platforms: LUMC [N~2,320; M~44] & Brainshake [N~2,890; M~226].
- Genetic data: 1,261,818 SNPs & N = 15,110 → no ethnic outliers, autosomes only, HWE > 1x10⁻⁶, MAF > 0.01.
- GRM: Down-weighting of high-LD SNPs in GRM construction (LDAK; Speed et al. 2012).
- Statistics: Simultaneous estimation of narrow-sense & SNP h² by including two GRMs in GCTA (Yang et al. 2010; Yang et al. 2011).
 1) full GRM with both closely & distantly related pairs of individuals
 2) ‘family’ GRM with values of distantly related pairs of individuals set to zero (Zaitlen et al. 2013).

Conclusions

- Narrow-sense heritability estimates similar to those obtained in classic twin-family studies of similar platforms.
- Direct comparison with previous SNP h² difficult as both studies are underpowered and use different platforms and GRMs.
- Congruent with Rhee et al. (2016), common SNPs alone are not underpowered and use different platforms and GRMs.
- Previously, Rhee et al. (2016) investigated the contribution of common & rare variants to overall SNP h².
- Aim: Estimate both narrow-sense & SNP h² for 4 metabolomics platforms measured in NTR blood samples.

Genome-wide Heritability of Metabolomics-derived Blood Metabolites

F.A. Hagenbeek1,2, M.G. Nivard1, R. Pool1,2,3, H.H.M. Draisma4, JJ. Hottenga1,5, G. Willemsen1,2, A. Abellaoui1, A. Harms6,7, BBMRI-NL3, T. Hankemeier6,7, M. Bartels1,2,5 & D.I. Boomsma1,2,5

1Department of Biological Psychology, VU Amsterdam, Amsterdam, the Netherlands. 2EMGO+ Institute for Health and Care Research, Amsterdam, the Netherlands. 3BBMRI-NL: Infrastructure for the Application of Metabolomics Technology in Epidemiology, Leiden, The Netherlands. 4Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands. 5Neuroscience Campus Amsterdam, Amsterdam, the Netherlands. 6Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands. 7The Netherlands Metabolomics Centre, Leiden, The Netherlands.