ASSOCIATIONS BETWEEN CBCL OCS AND CBCL AP
Robert R. Althoff, M.D., Ph.D.¹, David C. Rettew, M.D.¹, Dorret I. Boomsma, Ph.D.², and James J. Hudziak, M.D.¹,²

In our earlier work (Nelson et al., 2001), we used factor analysis to test and derive an Obsessive Compulsive Scale (OCS). A single factor accounted for 40.0% of the variance and, after simplification of the solution, consisted of 8 items. We then compared CBCL weighted factor scores for a cohort of pediatric OCD patients who had been diagnosed as having DSM-IV OCD with scores from clinically ascertained and general population controls. We demonstrated that the OCS from the CBCL had moderate sensitivity and high specificity to detect clinical OCD, with positive predictive value (PPV) ranging between 70.5% - 83.3% and negative predictive value (NPV) ranging between 88.2% - 91.6%. The utility of the OCS as a screen for OCD has subsequently been replicated in both its original (Geller et al. 2006) and a revised form (Storey et al. 2006).

Subsequently, we have shown that a simple addition of the items placed into the analysis using a Receiver Operating Characteristic (ROC) curve analysis allowed for similar characteristics. Using a CBCL-OCS cutoff of 5 demonstrated an Area Under the Curve (AUC) of 0.88 with high sensitivity (92%) and moderate specificity (67%) compared to clinical controls. Compared to the general population controls, the AUC was 0.96 with high sensitivity (92%) and specificity (89%) (Hudziak et al., 2006).

We have also shown using structural equation modeling that the OCS is influenced by genetic factors (~55%) and unique environmental factors (~45%) at ages 7 and 10 with common environmental influences at age 12 (Hudziak et al., 2004). We have shown its stability in terms of longitudinal course and heritability (van Goothoef et al., 2007).

Questions

1) Because of a reportedly higher incidence of ADHD in OCD probands, we questioned whether there would be similar relations between CBCL-defined OCS and the Attention Problems (AP) scale.

2) We questioned whether the twin-twin correlations of the two measures, CBCL-OCS and CBCL-AP would be higher between monozygotic (MZ) than dizygotic (DZ) twins as an indication of a genetic mechanism for their co-occurrence.

Introduction

Using data from the Childhood Behavior Checklist (CBCL), we have developed a scale that can be used to identify children with OCD. In our earlier work (Nelson et al., 2001), we used factor analysis to test and derive an Obsessive Compulsive Scale (OCS). A single factor accounted for 40.0% of the variance and, after simplification of the solution, consisted of 8 items. We then compared CBCL weighted factor scores for a cohort of pediatric OCD patients who had been diagnosed as having DSM-IV OCD with scores from clinically ascertained and general population controls. We demonstrated that the OCS from the CBCL had moderate sensitivity and high specificity to detect clinical OCD, with positive predictive value (PPV) ranging between 70.5% - 83.3% and negative predictive value (NPV) ranging between 88.2% - 91.6%. The utility of the OCS as a screen for OCD has subsequently been replicated in both its original (Geller et al. 2006) and a revised form (Storey et al. 2006).

Subsequently, we have shown that a simple addition of the items placed into the analysis using a Receiver Operating Characteristic (ROC) curve analysis allowed for similar characteristics. Using a CBCL-OCS cutoff of 5 demonstrated an Area Under the Curve (AUC) of 0.88 with high sensitivity (92%) and moderate specificity (67%) compared to clinical controls. Compared to the general population controls, the AUC was 0.96 with high sensitivity (92%) and specificity (89%) (Hudziak et al., 2006).

We have also shown using structural equation modeling that the OCS is influenced by genetic factors (~55%) and unique environmental factors (~45%) at ages 7 and 10 with common environmental influences at age 12 (Hudziak et al., 2004). We have shown its stability in terms of longitudinal course and heritability (van Goothoef et al., 2007).

Introduction

Using data from the Childhood Behavior Checklist (CBCL), we have developed a scale that can be used to identify children with OCD. In our earlier work (Nelson et al., 2001), we used factor analysis to test and derive an Obsessive Compulsive Scale (OCS). A single factor accounted for 40.0% of the variance and, after simplification of the solution, consisted of 8 items. We then compared CBCL weighted factor scores for a cohort of pediatric OCD patients who had been diagnosed as having DSM-IV OCD with scores from clinically ascertained and general population controls. We demonstrated that the OCS from the CBCL had moderate sensitivity and high specificity to detect clinical OCD, with positive predictive value (PPV) ranging between 70.5% - 83.3% and negative predictive value (NPV) ranging between 88.2% - 91.6%. The utility of the OCS as a screen for OCD has subsequently been replicated in both its original (Geller et al. 2006) and a revised form (Storey et al. 2006).

Subsequently, we have shown that a simple addition of the items placed into the analysis using a Receiver Operating Characteristic (ROC) curve analysis allowed for similar characteristics. Using a CBCL-OCS cutoff of 5 demonstrated an Area Under the Curve (AUC) of 0.88 with high sensitivity (92%) and moderate specificity (67%) compared to clinical controls. Compared to the general population controls, the AUC was 0.96 with high sensitivity (92%) and specificity (89%) (Hudziak et al., 2006).

We have also shown using structural equation modeling that the OCS is influenced by genetic factors (~55%) and unique environmental factors (~45%) at ages 7 and 10 with common environmental influences at age 12 (Hudziak et al., 2004). We have shown its stability in terms of longitudinal course and heritability (van Goothoef et al., 2007).

Questions

1) Because of a reportedly higher incidence of ADHD in OCD probands, we questioned whether there would be similar relations between CBCL-defined OCS and the Attention Problems (AP) scale.

2) We questioned whether the twin-twin correlations of the two measures, CBCL-OCS and CBCL-AP would be higher between monozygotic (MZ) than dizygotic (DZ) twins as an indication of a genetic mechanism for their co-occurrence.

Introduction

Using data from the Childhood Behavior Checklist (CBCL), we have developed a scale that can be used to identify children with OCD. In our earlier work (Nelson et al., 2001), we used factor analysis to test and derive an Obsessive Compulsive Scale (OCS). A single factor accounted for 40.0% of the variance and, after simplification of the solution, consisted of 8 items. We then compared CBCL weighted factor scores for a cohort of pediatric OCD patients who had been diagnosed as having DSM-IV OCD with scores from clinically ascertained and general population controls. We demonstrated that the OCS from the CBCL had moderate sensitivity and high specificity to detect clinical OCD, with positive predictive value (PPV) ranging between 70.5% - 83.3% and negative predictive value (NPV) ranging between 88.2% - 91.6%. The utility of the OCS as a screen for OCD has subsequently been replicated in both its original (Geller et al. 2006) and a revised form (Storey et al. 2006).

Subsequently, we have shown that a simple addition of the items placed into the analysis using a Receiver Operating Characteristic (ROC) curve analysis allowed for similar characteristics. Using a CBCL-OCS cutoff of 5 demonstrated an Area Under the Curve (AUC) of 0.88 with high sensitivity (92%) and moderate specificity (67%) compared to clinical controls. Compared to the general population controls, the AUC was 0.96 with high sensitivity (92%) and specificity (89%) (Hudziak et al., 2006).

We have also shown using structural equation modeling that the OCS is influenced by genetic factors (~55%) and unique environmental factors (~45%) at ages 7 and 10 with common environmental influences at age 12 (Hudziak et al., 2004). We have shown its stability in terms of longitudinal course and heritability (van Goothoef et al., 2007).

Questions

1) Because of a reportedly higher incidence of ADHD in OCD probands, we questioned whether there would be similar relations between CBCL-defined OCS and the Attention Problems (AP) scale.

2) We questioned whether the twin-twin correlations of the two measures, CBCL-OCS and CBCL-AP would be higher between monozygotic (MZ) than dizygotic (DZ) twins as an indication of a genetic mechanism for their co-occurrence.

Introduction

Using data from the Childhood Behavior Checklist (CBCL), we have developed a scale that can be used to identify children with OCD. In our earlier work (Nelson et al., 2001), we used factor analysis to test and derive an Obsessive Compulsive Scale (OCS). A single factor accounted for 40.0% of the variance and, after simplification of the solution, consisted of 8 items. We then compared CBCL weighted factor scores for a cohort of pediatric OCD patients who had been diagnosed as having DSM-IV OCD with scores from clinically ascertained and general population controls. We demonstrated that the OCS from the CBCL had moderate sensitivity and high specificity to detect clinical OCD, with positive predictive value (PPV) ranging between 70.5% - 83.3% and negative predictive value (NPV) ranging between 88.2% - 91.6%. The utility of the OCS as a screen for OCD has subsequently been replicated in both its original (Geller et al. 2006) and a revised form (Storey et al. 2006).

Subsequently, we have shown that a simple addition of the items placed into the analysis using a Receiver Operating Characteristic (ROC) curve analysis allowed for similar characteristics. Using a CBCL-OCS cutoff of 5 demonstrated an Area Under the Curve (AUC) of 0.88 with high sensitivity (92%) and moderate specificity (67%) compared to clinical controls. Compared to the general population controls, the AUC was 0.96 with high sensitivity (92%) and specificity (89%) (Hudziak et al., 2006).

We have also shown using structural equation modeling that the OCS is influenced by genetic factors (~55%) and unique environmental factors (~45%) at ages 7 and 10 with common environmental influences at age 12 (Hudziak et al., 2004). We have shown its stability in terms of longitudinal course and heritability (van Goothoef et al., 2007).

Questions

1) Because of a reportedly higher incidence of ADHD in OCD probands, we questioned whether there would be similar relations between CBCL-defined OCS and the Attention Problems (AP) scale.

2) We questioned whether the twin-twin correlations of the two measures, CBCL-OCS and CBCL-AP would be higher between monozygotic (MZ) than dizygotic (DZ) twins as an indication of a genetic mechanism for their co-occurrence.