Common variants at 12q15 and 12q24 are associated with infant head circumference

H Rob Taal1,2,3, Beate St Pourcain4, Elisabeth Thiering5, Shikta Das6, Dennis O Mook-Kanamori1,2,3,7, Nicole M Warrington8,9, Marika Kaakinen10,11, Eskil Kreiner-Møller12, Jonathan P Bradfield13, Rachel M Freathy14, Frank Geller15, Mónica Guxens16,17,18, Diana L Cousminer19, Marjan Kerkhof20, Nicholas J Timpson4, M Arfan Ikrar1,21, Lawrence J Beilin22, Klaus Bonnelykke12, Jessica L Buxton23, Pimphoen Charoen5,24, Bo Lund Krogsgaard Chawes12, Johan Erikszon25,26,27, David M Evans4, Albert Hofman1,3, John P Kemp4, Cecilia E Kim13, Norman Klopp28,29, Jari Lahti30, Stephen J Lye9, George McMahan4, Frank D Mentch13, Martina Müller31,32,33, Paul F O’Reilly34, Inga Prokopenko35,36, Fernando Rivadeneira1,37, Eric A P Steegers38,39, Jordi Sunyer16,17,18,39, Carla Tiesler4,5,40, Hanieh Yaghoobtak14, Cohorts for Heart and Aging Research in Genetic Epidemiology (CHARGE) Consortium41, Monique M B Breteler1, Stephanie Debette42, Myriam Fornage43, Vilmundur Gudnason44,45, Lenore J Launer46, Aad van der Lugt21, Thomas H Mosley47, Sudha Seshadri42, Albert V Smith44,45, Meike V Vernooij1,21, Early Genetics & Lifecourse Epidemiology (EAGLE) consortium41, Alexandra IF Blakemore23, Rosetta M Chiaucci13, Bjørk Feenstra15, Julio Fernandez-Benitez48, Struan F A Grant3,49,50, Anna-Liisa Hartikainen51, Albert J van der Heijden2, Carmen Iñiguez18,52, Mark Lathrop53,54, Wendy L McArthue55, Anne Mølgaard12, John P Newnham3, Lyle J Palmer9,56, Aarno Palotie19,57,58,59, Annneli Pouta60, Susan M Ring61,55, Ulla Sovio62,61, Marie Standl5, André G Uitterlinden1,37, H-Erich Wichmann31,33, Nadja Hadawa Vissing12, Charles DeCarli62, Cornelia M van Duijn1, Mark I McCarthy35,36,63, Gerard H. Koppelman64, Xavier Estivill18,39,65, Andrew T Hattersley66, Mads Melbye15, Hans Bisgaard12, Craig E Pennell1, Elisabeth Widen19, Hakon Hakonarson13,49,50, M Arfan Ikram23,24,25,26,27, Struan F A Grant6,24,25,26,27,44,45, Jochen Heinrich5,41, Joachim Heinrich5,1, Marjo-Riitta Jarvelin10,60,67, Early Growth Genetics (EGG) Consortium41, and Vincent W V Jaddoe1,2,3,†

† Corresponding author contact details: George Davey Smith. The MRC Centre for Causal Analyses, in Translational Epidemiology, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK, Tel. +44 (0)117 3310095, Fax. +44 (0)117 3310123, Julia.Mackay@bristol.ac.uk, Marjo-Riitta Jarvelin Department of Epidemiology and, Public Health, Imperial College London, London, UK, Tel. +44 (0)207 5943345, Fax. +44 (0)207 4022150, m.jarvelin@imperial.ac.uk, Joachim Heinrich. Helmholtz Zentrum Muenchen, German Research Centre for, Environmental Health, Institute of, Epidemiology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany, Tel. +49 (0)89-31874150, Fax +49 (0)89-31873380, Joachim.heinrich@helmholtzmuenchen.de, Vincent V. W. Jaddoe, Generation R Study Group (Room, AE 006), Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands, Tel. +31 (0)10 7043405, Fax. +31 (0)10 7044645, v.jaddoe@erasmusmc.nl.

AUTHOR CONTRIBUTIONS

COMPETING INTERESTS STATEMENT

The authors declare no competing financial interests
1Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
2Department of Paediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
3The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands
4MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol, UK
5Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
6Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
7Weill Cornell Medical College - Qatar, Doha, Qatar
8School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
9Samuel Lunenfeld Research Institute, University of Toronto, Toronto, Canada
10Institute of Health Sciences, University of Oulu, Finland
11Biocenter Oulu, University of Oulu, Finland
12Copenhagen Prospective Studies on Asthma in Childhood, University of Copenhagen, Copenhagen, Denmark
14Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, UK
15Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
16Center for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
17Hospital del Mar Research Institute (IMIM), Barcelona, Catalonia, Spain
18CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
19Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
20Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
21Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
22School of Medicine and Pharmacology, The University of Western Australia, Perth, Australia
23Department of Genomics of Common Disease, School of Public Health, Imperial College London
24Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
25National Institute for Health and Welfare, Helsinki, Finland
26Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
27Folkhalsans Research Centre, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
28Research Unit for Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
29Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
30Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
31Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
32Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
33Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany
34Department of Epidemiology and Biostatistics, Imperial College London, W2
35Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
36Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
37Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
38Department of Obstetrics & Gynecology, Erasmus Medical Center, Rotterdam, The Netherlands
39Pompeu Fabra University (UPF), Barcelona, Catalonia, Spain
40Dr Von Hauner Children’s Hospital, Ludwig-Maximilians University Munich, Munich, Germany
41A full list of members and affiliations is provided at the end of the manuscript
42Department of Neurology, Boston University School of Medicine, Boston, MA, USA
43Institute of Molecular Medicine, Human Genetics Center and Division of Epidemiology, School of Public Health, University of Texas, Houston Health Sciences Center, Houston, TX, USA
44Icelandic Heart Association, Kopavogus, Iceland
45University of Iceland, Reykjavik, Iceland
46Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, National Institute of Health, Bethesda, MD, USA
47Department of Medicine (Geriatrics), University of Mississippi Medical Center, Jackson, MS, USA
48European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
49Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
Abstract

To identify genetic variants associated with head circumference in infancy, we performed a meta-analysis of seven genome-wide association (GWA) studies (N=10,768 from European ancestry enrolled in pregnancy/birth cohorts) and followed up three lead signals in six replication studies (combined N=19,089). Rs7980687 on chromosome 12q24 (P=8.1×10^{-9}), and rs1042725 on chromosome 12q15 (P=2.8×10^{-10}) were robustly associated with head circumference in infancy. Although these loci have previously been associated with adult height\(^1\), their effects on infant head circumference were largely independent of height (P=3.8×10^{-7} for rs7980687, P=1.3×10^{-7} for rs1042725 after adjustment for infant height). A third signal, rs11655470 on chromosome 17q21, showed suggestive evidence of association with head circumference (P=3.9×10^{-6}). SNPs correlated to the 17q21 signal show genome-wide association with adult intracranial volume\(^2\), Parkinson’s disease and other neurodegenerative diseases\(^3-5\), indicating that a common genetic variant in this region might link early brain growth with neurological disease in later life.

MAIN TEXT

Head circumference in infancy is used as a measure for brain size and development\(^6-7\). Normal variation in head circumference seems to be associated with cognitive and behavioral development\(^8-10\). Larger head circumference in infancy is associated with higher IQ scores in childhood\(^10-12\). The underlying mechanisms however, are poorly understood. Head circumference is a complex trait with a high heritability of around 0.7-0.9\(^13\). Several rare mutations with large effects on head circumference have been identified\(^14-17\), including those resulting in microcephaly and intellectual disability\(^15-17\). Common genetic variants that influence normal variation in head circumference in early life have not yet been identified.

To search for common genetic variants associated with head circumference in infancy, we performed a meta-analysis of GWA studies. We reasoned that finding such common variants
might lead to enhanced understanding of molecular mechanisms important for variation in brain development.

We meta-analyzed association statistics from ~2.5 million directly-genotyped and imputed SNPs in infants of European descent from seven discovery GWA studies (N=10,768; Supplementary Table 1). In all studies head circumference in infancy (age 18 months, range 6 to 30 months) was measured from the occipital protuberance to the forehead, using a flexible, non-stretching measure tape following standardized procedures. If multiple measurements were available for one individual in this time window, only the measurement performed closest to the age of 18 months was used (Supplementary Tables 1 and 2). Since the relationship between head circumference and age during infancy is non-linear and the variance increases with age, we calculated sex- and age-adjusted SD-scores of head circumference in each study separately.

In the discovery phase we identified three lead signals (Manhattan plot is shown in Supplementary Fig. 1): two independent loci on chromosome 12 and one on chromosome 17, which showed suggestive evidence for association with head circumference in infancy. These three loci represent the first three independent loci of the discovery analysis and were at 12q24.31, in SBNO1 (rs7980687, \(P_{\text{discovery}}=3.3 \times 10^{-7}\); Figure 1a), at 12q15, near HMGA2 (rs1042725, \(P_{\text{discovery}}=6.6 \times 10^{-7}\); Figure 1b) and at 17q21.1, near CRHR1/MAPT (rs11655470, \(P_{\text{discovery}}=1.4 \times 10^{-6}\); Figure 1c). Other loci, suggesting an association with infant head circumference (\(P<1 \times 10^{-5}\)) are described in Supplementary Table 3.

Table 1 shows the associations of these three lead SNPs in each cohort. We followed up these three associations in six independent replication samples of European descent (N=8,321; Supplementary Table 2). We genotyped the most strongly associated SNP from each locus (rs7980687 from 12q24.31; rs1042725 from 12q15; rs11655470 from 17q21.1), or a closely-correlated proxy (HapMap \(R^2\)). Consistent associations were observed for both signals on chromosome 12 in the replication samples (\(P=0.003\) and \(P=8.1 \times 10^{-5}\) for rs7980687 and rs1042725 respectively). Marginal evidence of association for rs11655470 was seen in the replication samples (\(P=0.093\)). Genomic control correction was applied during the discovery meta-analysis stage to adjust the statistics generated within each cohort (\(\lambda\) values ranging from 1.007-1.054, Supplementary Table 1). Results from the replication cohorts were combined with the genomic control corrected discovery results to get the overall meta-analysis results. Combining discovery and replication samples (N=19,089; Table 1), each A allele of rs7980687 in SBNO1 was robustly associated with a 0.074 SD larger head circumference (95% CI: 0.049, 0.099; \(P=8.1 \times 10^{-9}\), explained variance 0.24%) and each T allele of rs1042725 near HMGA2 with a 0.065 SD smaller head circumference (95% CI: -0.085, -0.045; \(P=2.8 \times 10^{-10}\), explained variance 0.33%). This reflects a difference of around 1.2 and 1.0 mm in head circumference respectively. The effect of each T allele of rs11655470 near CRHR1/MAPT did not reach genome-wide significance in the combined analysis (effect 0.048 SD larger head circumference; 95%CI: 0.028, 0.068; \(P=3.8 \times 10^{-6}\), explained variance 0.21%). These three associations showed low heterogeneity (\(P>0.1\), \(I^2=5-33\%\)).

Additionally, the signals in SBNO1 and near HMGA2, but not the one near CRHR1/MAPT, were associated with height measured at the same visit as head circumference (Supplementary Table 4). When we adjusted the model for current height, the associations of rs7980687 and rs1042725 with head circumference were slightly attenuated (effect size 0.057 SD; 95%CI: 0.035, 0.080; \(P=3.8 \times 10^{-7}\) and -0.048 SD; 95%CI: -0.066, -0.030; \(P=1.3 \times 10^{-7}\) for rs7980687 and rs1042725 respectively, Supplementary Table 5). The association of the third signal near CRHR1/MAPT was unaffected. In depth mediation analysis showed that the effects of rs7980687 and rs1042725 on head circumference were
only partly (12% and 24% respectively) explained by height (Supplementary Fig. 2, Supplementary Table 6). The effect of rs11655470 was a completely direct effect of the SNP on head circumference (Supplementary Table 6). To further adjust for possible population stratification we added principal components to the model, in cohorts where these measures were available (total N = 12,763). This did not materially change the effect on head circumference, indicating that the utilized association tests are robust to population stratification (Supplementary Table 7). The three variants were not associated with other covariates such as breast feeding, socioeconomic status or educational level (data not shown). We did not find evidence for an interaction of these variants with infant sex or breastfeeding after Bonferroni correction (P>0.017, Supplementary Table 8 and 9).

In order to further investigate an effect of the three lead signals on fetal head growth, we assessed the associations of the variants with head circumference using third trimester fetal ultrasound data (n=3,781) and head circumference measured at birth (n=13,775), in discovery and replication cohorts that had these data available (Supplementary Table 2). All three signals showed evidence of association with head circumference in third trimester of pregnancy and at birth (Table 2). The directions of the effects were consistent with those in infancy.

Next, we assessed the associations of the three lead signals with intra-cranial volume (ICV) in adulthood, measured by magnetic resonance imaging (MRI), in 8,175 individuals in the CHARGE-consortium. There was evidence of association between the signals near HMGA2 and CRHR1/MAPT and ICV (Table 2). For the signal near CRHR1/MAPT, a variant further downstream (rs9915547; r² 0.22 HapMap CEU) showed a genome-wide significant association (P<5×10⁻⁸). All directions of the effects were consistent with the observed associations for head circumference in infancy (Table 2).

We also assessed if there were possibly functional common variants in LD (r² > 0.50) with our three lead SNPs, being either non-synonymous SNPs or eQTLs. One variant, rs1060105, in high LD with our lead signal (rs7980687 with HapMap r² 0.89), was a non-synonymous SNP located in exon 5 of SBNO1 (missense; AGT(Ser) => AAT(Asn)). The minor allele (A) of rs1060105 was associated with an increased head circumference in infancy (effect size 0.081 SD; 95%CI: 0.048, 0.115; P=2.4×10⁻⁶ (N=10,768)). The underlying mechanism is unknown. Considering that transcription regulation is highly cell-type specific, we next evaluated whether we could find eQTLs established in brain tissue. We did not find eQTLs in publicly available brain expression data. Subsequently, we also explored eQTL databases from other tissues and identified three SNPs in LD with rs7980687 (r² > 0.7 HapMap CEU) associated with gene transcript expression of CDK2AP1 and MPHOSPH9 in liver tissue, monocytes and lymphoblastoid cell lines. Little is known on these genes except that both CDK2AP1 and MPHOSPH9 are involved in cell-cycle regulation (Supplementary Table 10).

To our knowledge, this is the first genome-wide association study on head circumference in infancy. The top two signals (rs7980687 in SBNO1 and rs1042725 near HMGA2) associated with infant head circumference have previously been associated with adult height. Therefore, we also assessed the association between the 180 known height variants and head circumference during infancy. A strong deviation from the null-line was observed on the QQ-plot (Supplementary Fig. 3). Besides SBNO1 and HMGA2, 23 other height variants were nominally associated with head circumference in infancy (Supplementary Table 11). After applying Bonferroni correction for multiple testing in this candidate gene analysis (P<2.8×10⁻⁴), markers in near ZNF51 (P=6.1x10⁻⁶), OR2J3 (P=1.8x10⁻⁷) and ZBTB38 (P=1.8x10⁻⁴) remained statistically significant associated with head circumference in infancy.
The relative effect size of rs1042725 near **HMGA2** was similar for infant head circumference (0.065 SD) and adult height (0.060 SD). However, the effect size of rs7980687 in **SBN01** on infant head circumference (0.074 SD) was considerably larger than for adult height (0.035 SD). As head size is correlated with total body size, it might be that the top two loci have a more general regulating role in skeletal growth and bone development. It also could be that variants in **SBN01** affect brain growth and concurrent head circumference, or that they affect skull growth rather than skeletal growth. The **SBN01**-gene is involved in the Notch signaling pathway. In *Drosophila*, a similar gene (*sno*) is required for early embryogenesis, and absence of this gene leads to maldevelopment of the central nervous system. In humans **SBN01** has been implicated in oncogenic processes.

The variant near **HMGA2** was one of the first to be associated with adult height. Deletions and truncations in the **HMGA2**-gene in mice and humans have been associated with small and large stature. The effect of **HMGA2** is similar for head circumference and adult height, thus it seems likely that it has a more general role in skeletal growth.

A third variant (rs11655470), in the promoter region of **CRHR1/MAPT**, was also related to head circumference, though this signal did not reach genome-wide significance. Rs11655470 lies within the 17q21 inversion, but is not strongly correlated with the inversion ($r^2 0.22$ HapMap CEU). This 900kb region, corresponding to the conversion, contains several genes. The SNP is closely related to the **CRHR1**-gene ($r^2 0.59$ HapMap CEU with rs171440). Variants in/near **CRHR1** have been associated with brain development and bone mineral density, although the underlying mechanisms are largely unknown. Another gene included in the 17q21 inversion is **MAPT** ($r^2 0.22$ HapMap CEU). Both common variants and mutations in **MAPT** are known to be associated with Parkinson’s disease and other neurodegenerative diseases. Other genes in this region are saitohin (**STH**) and granulin (**GRN**). **STH** has been associated with progressive supranuclear palsy and increased risk of late-onset Alzheimer’s disease. Mutations in **GRN** have been shown to cause fronto-temporal degeneration. It might be that common genetic variants in/near **CRHR1/MAPT** affect early brain development, by altering the stability and assembly of microtubules. Ikram et al. showed that a correlated SNP in the same region (rs9303525, HapMap $r^2 0.22$ with rs11655470) is associated with adult intra cranial volume, reaching genome-wide significance. Since the LD between the variants is low, it could be that they represent separate independent effects on different phenotypes. When we adjusted the effect of rs11655470 on infant head circumference for the CHARGE ICV signal (rs9915547), the effect was attenuated but remained significant (0.059 SD ($P=1.0 \times 10^{-5}$)) and 0.037 SD ($P=7.3 \times 10^{-3}$) before and after adjustment for rs9915547 respectively, suggesting that these signals both tag a third marker influencing both phenotypes (Supplementary Table 12).

However, although the association attenuates after conditioning on the CHARGE ICV signal, the two signals might still independently tag different causal markers in the region and the attenuation might be due to the weak LD, because of proximity, between the two signals. The marker associated with head circumference is in low LD with the chromosome 17q21 inversion, while the CHARGE ICV signal is in high LD with the inversion. Therefore, it does not seem likely that the 17q21 inversion is causally related to infant head circumference. The biological mechanisms underlying these associations are largely unknown.

Our study highlights early effect of variants in/near **SBN01** and **HMGA2** on head circumference in fetal life and infancy, and shows that a variant near **CRHR1/MAPT** is marginally associated with head circumference in infancy. Our findings suggest that the genetic variants in the **CRHR1/MAPT** region might link early brain growth with...
neurological disease in later life. Further research is needed to elucidate whether these variants influence brain growth and neurodevelopment in early life.

ONLINE METHODS

Stage 1: GWA meta-analysis of head circumference

Discovery samples, genotyping and imputation—We selected seven population-based studies with head circumference measured in infancy (study cohort specific median age range 11-18 months) and GWA data available by the beginning of March 2010 (combined N=10,768): the Avon Longitudinal Study of Parents And Children (ALSPAC; N=1,748); The Children’s Hospital of Philadelphia (CHOP; N=1,008); the Copenhagen Study on Asthma in Childhood (COPSAC; N=369); The Generation R Study (Generation R; N=2,240); the Lifestyle – Immune System – Allergy Study (LISA; N=357); the Northern Finland 1966 Birth Cohort (NFBC1966; N=4,287) and the Western Australian Pregnancy study (RAINE; N=759). Genotypes were obtained using high-density SNP arrays, and then imputed for ~2.4 million HapMap SNPs (Phase II, release 21/22, http://hapmap.ncbi.nlm.nih.gov/). The basic characteristics, exclusions (e.g. samples of non-European ancestry), genotyping, quality control and imputation methods for each discovery sample are presented in Supplementary Table 1.

Statistical analysis within discovery samples—Head circumference was measured in infancy (age window: 6-30 months). If multiple measurements were available for one individual within this age window, the measurement closest to 18 months was used. Sex- and age-adjusted standard deviation scores (SD score) were constructed using Growth Analyser 3.0 (http://www.growthanalyser.org; Dutch Growth Research Foundation, Rotterdam, the Netherlands) in each study separately. The association between each SNP and head circumference was assessed in each study sample using linear regression of head circumference SD score against genotype, assuming an additive model. Imputed genotypes were only used where directly-assayed genotypes were unavailable.

Meta-analysis of discovery samples—Data exchange was facilitated by the SIMBioMS platform (simbioms.org). Prior to meta-analysis, SNPs with a minor allele frequency <1% and poorly-imputed SNPs (proper_info ≤0.4 [SNPTTEST]; r² ≤0.3 [MACH2QTL]) were filtered. Fixed effects meta-analyses were independently conducted by two investigators (H.R.T., D.O.M-K.). Meta-analysis was performed using the software package: METAL (http://www.sph.umich.edu/csg/abecasis/metal/index.html); Genomic control was applied during the meta-analysis stage to adjust the statistics generated within each cohort (see Supplementary Table 1 for individual study λ values, discovery meta-analysis λ value: 1.043). Meta-analysis was done using the inverse-variance method; a fixed effects model was assumed. SNPs available in less than four discovery cohorts were excluded. Final meta-analysis results were obtained for 2,449,806 SNPs. We considered the top three lead signals (representing 3 distinct genomic regions on chromosomes 12 and 17) in the discovery analysis for further follow-up in additional samples. The two loci at chromosome 12 reached the threshold of P<1×10^-6 and were therefore selected for replication and the third locus at chromosome 17 was just above that threshold (P=1.4×10^-6) and was selected because of prior knowledge of the nearby genome wide significant hit on intracranial volume as described by Ikram et al.

Stage 2: Follow-up of three lead signals in additional samples

Follow-up samples, genotyping and analysis—We used 6 independent study samples (combined N=8,321) to follow up the three lead signals from the GWA meta-analysis (represented by index SNPs rs7980687, rs1042725 and rs11655470). Details of
these study samples are presented in Supplementary Table 2. If the index SNP was unavailable, a closely correlated proxy was substituted (rs12322888 or rs12316131 for rs7980687 [HapMap \(r^2 = 0.95 \)]; rs7970350 or rs1351394 for rs1042725 [HapMap \(r^2 = 1 \) and 0.91 respectively]; rs12938031 for rs11655470 [HapMap \(r^2 = 0.58 \)]). In 3 of the replication studies, the index SNPs were imputed from genome-wide genotype data (see Supplementary Table 2). The head circumference analysis (as described above) was performed within each study sample.

Statistical analysis

Meta-analyses of discovery and replication samples—We performed fixed effects inverse variance meta-analyses of the head circumference association results for the three lead signals in the seven discovery samples and six replication samples combined. Fixed effects meta-analyses were conducted independently by two investigators (H.R.T., D.O.M-K.), using RMeta in R [v.2.7.0]). We used the Cochran Q test and the \(I^2 \) statistic to assess evidence of between-study heterogeneity of effect sizes.

Informed consent (or parental consent, as appropriate) was obtained from all discovery and follow-up study participants and study protocols were approved by the local ethics committees.

Analyses of potential confounders

To verify that the investigated lead SNPs were not associated with other covariates which could theoretically confound the observed associations with head circumference (including height, weight and age at measurement; breastfeeding; maternal educational level; and sex), we used linear or logistic regression models to assess the associations between each covariate and genotype, in all discovery and replication samples. For height and weight, we constructed sex- and age-adjusted SD scores using Growth Analyser 3.0 (http://www.growthanalyser.org; Dutch Growth Research Foundation, Rotterdam, the Netherlands) in each study separately, similar to the head circumference SD score. To investigate possible effects of the three lead signals on head circumference through height, we first conducted linear regression analysis with and without adjustment for height SD score. Second, we conducted a mediation analysis and assessed the direct SNP effects and indirect SNP effects (mediated through height) on head circumference for each of the signals using a seemingly unrelated regression model (STATA, StatCorp LP, College Station, TX, USA) or a simple path analysis model (MPLUS, Muthen & Muthen, Los Angeles, CA, USA), which provide identical effect estimates. To investigate whether the associations between genotypes and infant head circumference were similar in the sexes, we repeated the analyses in males and females separately. Furthermore, we evaluated possible effect modification by breastfeeding status for each of the SNPs. Where possible, we meta-analyzed results to assess overall evidence of association.

Analysis of fetal head circumference and intracranial volume

We explored associations of rs7980687, rs1042725 and rs11655470 with third trimester fetal head circumference and head circumference at birth, assuming an additive model using linear regression. Fetal head circumference was measured by ultrasound in three studies (combined \(N = 3,781 \) singleton pregnancies) in third trimester of pregnancy (gestational age window 27-36 weeks). Only one measurement per subject was included in the time window. If multiple measurements were available within the time-window, the one closest to the median of 32 weeks of the gestation was used. We calculated gestational age specific SD scores using previously published growth charts. This analysis was adjusted for sex. Head circumference was measured at birth, or within the 31st day of life, in 12 studies (\(N = 13,775 \); Supplementary table 2). We created SD scores for head circumference within each of the
cohorts and assessed the association with each SNP, adjusted for sex and gestational age. If head circumference was measured in the first month, we used gestational age at birth + age (weeks) at measurement in the first month. Combined effect estimates were calculated using fixed effects meta-analyses.

We used the meta-analysis on intracranial volume in adults, measured by MRI, in the Cohorts for Heart and Aging Research in Genetic Epidemiology (CHARGE) consortium as a third additional phenotype. Data collection methods, phenotype definition, baseline characteristics, and results of the meta-analysis are described elsewhere in this issue.

Analysis of known adult height variants with infant head circumference

We used the discovery meta-analyses to assess the associations of the previously identified 180 known adult height loci with head circumference in infancy, using the same model as described above. We also checked whether very closely related SNPs (HapMap r2 > 0.95) showed higher significance levels than the originally reported SNPs. SNPs with a P-value lower than 2.8×10^{-4} (0.05/180) were considered significant.

Variance explained

To estimate the percentage of variation in birth weight explained by each of the associated loci, we obtained the adjusted-R2 from univariate linear regression models of head circumference against genotype. We then calculated a mean value from all discovery and replication studies, weighted by sample size.

Non-synonomous SNPs and eQTLs

We assessed SNPs in LD with the three lead signals and checked for non-synonomous SNPs or eQTLs to identify possible functional variants explaining the associations with head circumference. First, we used the SNP Annotation and Proxy search developed by the Broad institute (http://www.broadinstitute.org/mpg/snap/) to select all SNPs in LD ($r^2 > 0.50$) with our three lead signals. We used the 1000 Genomes Pilot 1 set as SNP dataset for rs7980687 and rs1042725 and the HapMap r22 as SNP dataset for rs11655470 ($r^2 > 0.50$) since this SNP was not available on the 1000 Genomes dataset. Next, we evaluated whether these SNPs were non-synonomous using dbSNP search engine from NCBI. To evaluate whether there were cis-eQTLs in LD with our lead signals we searched publicly available eQTL databases through the NCBI GTEx (Genotype-Tissue Expression) eQTL Browser (http://www.ncbi.nlm.nih.gov/gtex/test/GTEX2/gtex.cgi) and the Generic Genome Browser (http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/). In total, these browsers search nine databases for eQTLs. Only cis-associations (defined as genes within 1Mb) that reached the P-value threshold for significance, as used in the original papers describing the gene expression datasets, were included in Supplementary Table 10. The statistics behind the eQTL analysis and calculation of the threshold for declaring significance of the associations are described in the published and validated eQTL datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

See also Supplementary Note for detailed acknowledgments by study.

Major funding for the research in this paper is as follows: Academy of Finland (project grants 104781, 120315, 129269, 1114194 and Center of Excellence in Complex Disease Genetics); Biocentrum Helsinki; Biocenter, University of Oulu, Finland; British Heart Foundation; Canadian Institutes of Health Research (grant MOP 82893);
Early Growth Genetics Consortium (EGG) Membership and Affiliations

The data exchange and deposition has been facilitated by the SIMBioMS platform (simbioms.org).

Personal funding is as follows: H.R.T by the Dutch Kidney Foundation (C08.2251), S.D. by the Medical Research Council UK (G0500539, PrevMetSyn, and P50476), R.M.F by a Sir Henry Wellcome Postdoctoral Fellowship (Wellcome Trust grant: 085541/Z/08/Z), D.M.E by a Medical Research Foundation; Rotterdam Homecare Foundation; South West NHS Research and Development; Stichting Astmabestrijding; Stichting Trombosedienst & Artsenalaboratorium Rijmond (STAR) Rotterdam; Technical University Munich; Telethon Institute for Child Health Research; UFZ-Centre for Environmental Health Research and Development; Darlington Trust; Dutch Asthma Foundation; Dutch Ministry of the Environment; Erasmus Medical Center Rotterdam; Erasmus University Rotterdam; The European Community’s Seventh Framework Programme (FP7/2007-2013), ENGAGE project, grant agreement HEALTH-F4-2007-201413; Exeter NHS Research and Development; Fundación La Maratón de TV3; Helmholtz Zentrum Muenchen - German Research Center for Environment and Health; Institute of Epidemiology Neuherberg; Instituto de Salud Carlos III (FIS PI081151, and PS09/00432); IUF-Institut für Umweltmedizinische Forschung Düsseldorf; Marien-Hospital Wesel; Medical Research Council UK (G0500539, G0600331, PrevMetSyn/Save/MRC, G0600705); Municipal Health Service Rotterdam; National Health and Medical Research Council of Australia (ID 403981 and ID 003209); National Public Health Institute, Helsinki, Finland; Netherlands Organisation for Scientific Research (NOW/ Netherlands Organisation for Health Research and Development (ZonMW) (grants SPI 56-464-14192, 904-61-193, 480-04-004, 400-05-717), NNLBI (grant SR01HL087679-02 through the STAMPEED program (1R1MH083268-01)); NIH (grant 1R01HD056465-01A1); Peninsula NIHR Clinical Research Facility; Raine Medical Research Foundation; Rotterdam Homecare Foundation; South West NHS Research and Development; Stichting Astmabestrijding; Stichting Trombosedienst & Artsenalaboratorium Rijmond (STAR) Rotterdam; Technical University Munich; Telethon Institute for Child Health Research; UFZ-Centre for Environmental Research/Leipzig-Halle; University Hospital Oulu, Finland; University of Bristol; University of Leipzig; Wellcome Trust (project grant GR069224); Western Australian DNA Bank; Western Australian Genetic Epidemiology Resource; ZonMW (grant 21000074).

The Children’s Hospital of Philadelphia (Institute Development Award); Cotswold Foundation (Research Development Award); Darlington Trust; Dutch Asthma Foundation; Dutch Ministry of the Environment; Erasmus Medical Center Rotterdam; Erasmus University Rotterdam; The European Community’s Seventh Framework Programme (FP7/2007-2013), ENGAGE project, grant agreement HEALTH-F4-2007-201413; Exeter NHS Research and Development; Fundació La Marató de TV3; Helmholtz Zentrum Muenchen - German Research Center for Environment and Health; Institute of Epidemiology Neuherberg; Instituto de Salud Carlos III (FIS PI081151, and PS09/00432); IUF-Institut für Umweltmedizinische Forschung Düsseldorf; Marien-Hospital Wesel; Medical Research Council UK (G0500539, G0600331, PrevMetSyn/Save/MRC, G0600705); Municipal Health Service Rotterdam; National Health and Medical Research Council of Australia (ID 403981 and ID 003209); National Public Health Institute, Helsinki, Finland; Netherlands Organisation for Scientific Research (NOW/ Netherlands Organisation for Health Research and Development (ZonMW) (grants SPI 56-464-14192, 904-61-193, 480-04-004, 400-05-717), NNLBI (grant SR01HL087679-02 through the STAMPEED program (1R1MH083268-01)); NIH (grant 1R01HD056465-01A1); Peninsula NIHR Clinical Research Facility; Raine Medical Research Foundation; Rotterdam Homecare Foundation; South West NHS Research and Development; Stichting Astmabestrijding; Stichting Trombosedienst & Artsenalaboratorium Rijmond (STAR) Rotterdam; Technical University Munich; Telethon Institute for Child Health Research; UFZ-Centre for Environmental Research/Leipzig-Halle; University Hospital Oulu, Finland; University of Bristol; University of Leipzig; Wellcome Trust (project grant GR069224); Western Australian DNA Bank; Western Australian Genetic Epidemiology Resource; ZonMW (grant 21000074).

The data exchange and deposition has been facilitated by the SIMBioMS platform (simbioms.org).

Personal funding is as follows: H.R.T by the Dutch Kidney Foundation (C08.2251), S.D. by the Medical Research Council UK (G0500539, PrevMetSyn, and P50476), R.M.F by a Sir Henry Wellcome Postdoctoral Fellowship (Wellcome Trust grant: 085541/Z/08/Z), D.M.E. by a Medical Research Council New Investigator Award (MRC G0800582 to D.M.E.), J.P.K. by a Wellcome Trust 4-year PhD studentship (WT083431MA), I.P. and J.F.B. in part supported by the European Community’s ENGAGE grant HEALTH-F4-2007-201413, A.T.H. is employed as a core member of the Peninsula NIHR Clinical Research Facility, V.W.V.J by the Netherlands Organization for Health Research (ZonMW 90700303, 916.10159).
1. Department of Nutrition, University of North Carolina, Chapel Hill, NC.
2. School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
3. Department of Physiology, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
4. Department of Biological Psychology, VU University, Amsterdam, The Netherlands.
5. The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands.
6. Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands.
7. Centre For Paediatric Epidemiology and Biostatistics/MRC Centre of Epidemiology for Child Health, University College of London Institute of Child Health, London, UK.
9. Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK.
10. Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
11. Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
12. MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, UK.
13. MRC-HPA Center, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
14. MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol, UK.
15. Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.
16. Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
17. Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Magdalen Road, Exeter, EX1 2LU, UK.
18. Duke-NUS Graduate Medical School, Singapore.
19. Saw Swee Hock School of Public Health, National University of Singapore.
20. Hospital del Mar Research Institute (IMIM), Barcelona, Catalonia, Spain.
21. CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain.
22. Center for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain.
23. Department of Child and Adolescent Psychiatry, University of Duisburg-Essen, Essen, Germany.
24. Divisions of Genetics and Endocrinology and Program in Genomics, Children’s Hospital, Boston, Massachusetts 02115, USA.

25. Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

26. Metabolism Initiative and Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA.

27. Human Genetics and Medical Genomics, Human Development & Health, Faculty of Medicine, University of Southampton.

28. Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton.

29. Institute of Preventive Medicine, Copenhagen University Hospital, Copenhagen, Denmark.

30. Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LJ, UK.

31. Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.

32. Institute of Health Sciences, University of Oulu, Finland

33. Biocenter Oulu, University of Oulu, Finland.

34. Department of Genomics of Common Disease, School of Public Health, Imperial College London.

35. Division of Environment and Health, Center for Public Health Research-CSISP, Valencia, Spain.

36. Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.

37. Centre for Population Health Sciences, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland.

38. Department of Public Health, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Finland.

39. Department of Genetics, University of North Carolina, Chapel Hill, NC.

40. Department of Clinical Chemistry, Tampere University Hospital, Tampere, Finland.

41. Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere, Finland

42. Genetic and Genomic Epidemiology Unit, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.

43. Estonian Genome Center, University of Tartu, Tartu, Estonia.

44. Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), University of Oxford, UK.

45. Department of Paediatrics, Erasmus Medical Center, Rotterdam, the Netherlands.

46. Department of Physiology and Biophysics, Weill Cornell Medical College - Qatar, Doha, Qatar.
47. Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA.
48. Department of Dietetics - Nutrition, Harokopio University of Athens, Athens, Greece.
49. Samuel Lunenfeld Research Institute, University of Toronto, Toronto, Canada
50. Genetic Epidemiology and Biostatistics Platform, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
51. Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
52. Department of Psychology, Mid Sweden University, Sweden.
53. Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.
54. Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom.
55. Division of Population Health Sciences and Education, St George’s, University of London
56. Pompeu Fabra University (UPF), Barcelona, Catalonia, Spain.
57. Division of Metabolic Diseases and Nutritional Medicine, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany.
58. Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands.
59. MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom.
60. Genes and Disease Program, Center for Genomic Regulation (CRG-UPF), Barcelona, Catalonia, Spain.
61. Obesity Prevention Program, Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Obesity Prevention Program, Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Boston, MA 02215 USA.
63. Department of Pediatrics, University of Pennsylvania, Philadelphia PA 19104, USA.
64. Peninsula NIHR Clinical Research Facility, Peninsula College of Medicine and Dentistry, University of Exeter, Barrack Road, Exeter, EX2 5DW, UK.
65. Institute of Nutritional Science, University of Potsdam, D-14558 Nuthetal Potsdam, Germany.
66. Center for Cardiovascular Research/Institute of Pharmacology, Charité, Berlin, Germany.
68. Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LJ, UK.
Early Genetics & Lifecourse Epidemiology (EAGLE) Membership and Affiliations

Wei Ang 1, Toos van Beijsterveldt 2, Nienke Bergen 3-4, Kelly Benke 1, Diane Berry 5, Jonathan Bradfield 6, Pimphn Charoen 7-8, Lachlan Coin 7, Diana Cousminer 9, Shikta Das 7, Paul Elliott 10, Dave M. Evans 11, Claudia Flexeder 12, Tim Frayling 13, Rachel Freathy 11, Romy Gaillard 3, Maria Groen-Blokhuis 2, Dexter Hadley 6, Jouke Jan Hottenga 2, Ville Huikari 14-15, Elina Hypponen 5, Marika Kaakinen 14-15, Mattew Kowgier 1, Debbie A. Lawlor 11, Alex Lewin 7, Cecilia Lindgren 17, Julie Marsh 1, Christel Middendorp 2, Iona Millwood 7, Dennis O. Mook-Kanamori 3-4, Michel Nivard 2, Paul O’Reilly 7, Lyle Palmer 21-22, Inga Prokopenko 23-24, Alina Rodriguez 7,25-26, Sylvain Sebert 7, Ulla Sovio 7, Beate St Pourcain 11, David P. Strachan 28, H. Rob Taal 3-4,19, Elisabeth Thiering 12, Carla Tiesler 12, Andre G. Uitterlinden 4,30, Beatriz Valcárcel 7, Nicole Warrington 1,21, Scott White 1, Gonneke Willemsen 2, Hanieh Yaghootkar 13, Dorret I. Boomsma 2, Struan F. Grant 6,31-32, Hakon Hakonarson 6,31-32, Andrew T. Hattersley 33, Joachim Heinrich 12, Vincent W.V. Jaddoe 3-4,19, Marjo-Riitta Jarvelin 10,14-15,34, Mark I. McCarthy 17-4,35, Craig E. Pennell 1, Chris Power 5, Nicholas J. Timpson 11, Elisabeth Widen 9

1. School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
2. Department of Biological Psychology, VU University, Amsterdam, The Netherlands.
3. The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands.
4. Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands.
5. Centre For Paediatric Epidemiology and Biostatistics/MRC Centre of Epidemiology for Child Health, University College of London Institute of Child Health, London, UK.
7. Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK.
8. Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
9. Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
10. MRC-HPA Center, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
11. MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol, UK.
12. Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
13. Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Magdalen Road, Exeter, EX1 2LU, UK.
14. Institute of Health Sciences, University of Oulu, Finland
15. Biocenter Oulu, University of Oulu, Finland.
16. Department of Genomics of Common Disease, School of Public Health, Imperial College London.
17. Genetic and Genomic Epidemiology Unit, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
18. Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), University of Oxford, UK.
19. Department of Paediatrics, Erasmus Medical Center, Rotterdam, the Netherlands.
20. Department of Physiology and Biophysics, Weill Cornell Medical College - Qatar, Doha, Qatar.
21. Samuel Lunenfeld Research Institute, University of Toronto, Toronto, Canada
22. Genetic Epidemiology and Biostatistics Platform, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
23. Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LJ, UK.
24. Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
25. Department of Psychology, Mid Sweden University, Sweden.
26. MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, UK.
27. Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom.
28. Division of Population Health Sciences and Education, St George’s, University of London
29. Division of Metabolic Diseases and Nutritional Medicine, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany.
30. Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands.

32. Department of Pediatrics, University of Pennsylvania, Philadelphia PA 19104, USA.

33. Peninsula NIHR Clinical Research Facility, Peninsula College of Medicine and Dentistry, University of Exeter, Barrack Road, Exeter, EX2 5DW, UK.

34. National Institute of Health and Welfare, Oulu, Finland.

35. Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LJ, UK.

Cohorts for Heart and Aging Research in Genetic Epidemiology (CHARGE)
Membership and Affiliations

M. Arfan Ikram 1,2,3, Myriam Fornage 4, Albert V. Smith 5,6, Sudha Seshadri 7,8,9, Reinhold Schmidt 10, Stéphanie Debette 7,8,11, Henri A. Vrooman 2,12, Sigurdur Sigurdsson 5, Stefan Ropele 10, Laura H. Coker 16, W.T. Longstreth Jr. 17, Wiro J. Niessen 2,12,18, Anita L. DeStefano 7,8,9, Alexa Beiser 7,8,9, Alex P. Zijdenbos 19, Maksim Struchalin 1, Clifford R. Jack Jr. 20, Mike A. Nalls 21, Rhoda Au 7,10, Albert Hofman 1,3, Haukur Gudnason 5, Aad van der Lugt 2, Tamara B. Harris 22, William M. Meeks 23, Meike W. Vernooij 1,2, Mark A. van Buchem 24, Diane Catellier 25, Vilmundur Gudnason 5,6, B. Gwen Windham 23, Philip A. Wolf 7,9, Cornelia M. van Duijn 1,3, Thomas H. Mosley Jr. 23, Helena Schmidt 26, Lenore J. Launer 22, Monique M.B. Breteler 1,3,27, Charles DeCarli 28

1. Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.

2. Department of Radiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.

4. Institute of Molecular Medicine and Human Genetics Center, University of Texas, Houston Health Sciences Center, Houston, TX, USA.

5. Icelandic Heart Association, Kopavogur, Iceland.

6. Faculty of Medicine, University of Iceland, Reykjavik, Iceland.

7. Department of Neurology, Boston University School of Medicine, Boston, MA, USA.

8. Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.

9. The National Heart Lung and Blood Institute’s Framingham Heart Study, Framingham, MA, USA.

10. Department of Neurology, Medical University Graz, Austria.

11. INSERM, U708, Neuroepidemiology, Paris, France.

12. Department of Medical Informatics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
13. Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA.
14. Department of Neurology and Epidemiology, University of Washington, Seattle, WA, USA.
15. Faculty of Applied Sciences, Delft University of Technology, The Netherlands.
16. Biospective Inc, Montreal, Canada.
17. Department of Radiology, Mayo Clinic, Rochester, MN, USA.
18. Laboratory of Neurogenetics, National Institute on Aging, National Institute of Health, Bethesda, MD, USA.
19. Laboratory of Epidemiology, Demography, and Biometry, National Institute of Health, Bethesda, MD, USA.
20. Department of Medicine (Geriatrics) and Neurology, University of Mississippi Medical Center, Jackson, MS, USA.
21. Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
22. Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA.
23. Institute of Molecular Biology and Biochemistry, Medical University Graz, Austria.
24. German Center for Neurologic Diseases (DZNE), Bonn, Germany.
25. Department of Neurology and Center of Neuroscience, University of California at Davis, Sacramento, CA, USA.

REFERENCES

Figure 1.
Directly genotyped and imputed SNPs are plotted using filled circles with their meta-
analysis P values (as −log10 values) as a function of genomic position (NCBI Build 36). In
each plot, the discovery-stage SNP taken forward to replication stage is represented by a
purple diamond (defining a global meta-analysis P value). Local LD structure is reflected by
the plotted estimated recombination rates (taken from HapMap) in the region around the
associated SNPs and their correlated proxies. The correlations of the lead SNP to other SNPs
at the locus are shown on a color scale from r\(^2\)<0.2 dark blue; 0.2=<r\(^2\)<0.4 light-blue;
0.4=<r\(^2\)<0.6 green; 0.6=<r\(^2\)<0.8 orange; r\(^2\)>=0.8 red. Superimposed on the plot are the
recombination rates (light blue line, second y axis). Gene annotations are shown as the dark
blue arrows. The regional plots were drawn using the LocusZoom software\(^3\).
1a Regional plot of locus 12q24.31
1b Regional plot of locus 12q15
1c Regional association plot of locus 17q21.1; downstream of the lead signal, rs9915547 is
indicated (r\(^2\) 0.22 HapMap CEU with rs11655470), which showed a genome wide
significant association with adult intra cranial volume (P=1.5×10\(^{-12}\)) as described in Ikram
et al.\(^2\)
Table 1

Individual association results by study and meta-analysis

<table>
<thead>
<tr>
<th>Study type</th>
<th>Study</th>
<th>Year(s) of birth</th>
<th>Median age (months)</th>
<th>Total N</th>
<th>% male</th>
<th>rs780687_A on 12q24</th>
<th>MAF</th>
<th>Beta</th>
<th>Se</th>
<th>P-value</th>
<th>rs1042725_T on 12q15</th>
<th>MAF</th>
<th>Beta</th>
<th>Se</th>
<th>P-value</th>
<th>rs11655470_T on 17q21</th>
<th>MAF</th>
<th>Beta</th>
<th>Se</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery</td>
<td>ALSPAC (D)</td>
<td>1991-2</td>
<td>18.9</td>
<td>1,748</td>
<td>53</td>
<td>0.19 0.105 0.038 6x10^-3</td>
<td>0.47</td>
<td>-0.071</td>
<td>0.031 0.02</td>
<td>3x10^-4</td>
<td>CHOP (2006-10)</td>
<td>0.105</td>
<td>0.038</td>
<td>0.47</td>
<td>-0.071</td>
<td>0.031 0.02</td>
<td>3x10^-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPSAC</td>
<td>1998-2001</td>
<td>18.1</td>
<td>369</td>
<td>49</td>
<td>0.20 0.041 0.058 0.48</td>
<td>0.48</td>
<td>-0.017</td>
<td>0.046 0.72</td>
<td>0.39 0.036</td>
<td>0.048 0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Generation R</td>
<td>2002-6</td>
<td>13.1</td>
<td>2,240</td>
<td>52</td>
<td>0.21 0.064 0.031 0.04</td>
<td>0.48</td>
<td>-0.059</td>
<td>0.026 0.02</td>
<td>0.42 0.060</td>
<td>0.026 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LISA (D)</td>
<td>1998-9</td>
<td>11.8</td>
<td>357</td>
<td>56</td>
<td>0.21 -0.045 0.077 0.56</td>
<td>0.48</td>
<td>-0.059</td>
<td>0.060 0.33</td>
<td>0.39 0.068</td>
<td>0.061 0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NFBC1966</td>
<td>1966</td>
<td>12.3</td>
<td>4,287</td>
<td>49</td>
<td>0.20 0.181 0.041 1x10^-5</td>
<td>0.49</td>
<td>-0.074</td>
<td>0.033 0.02</td>
<td>0.49 0.068</td>
<td>0.033 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAIN</td>
<td>1989-91</td>
<td>13.1</td>
<td>759</td>
<td>53</td>
<td>0.19 0.108 0.058 0.06</td>
<td>0.50</td>
<td>-0.179</td>
<td>0.043 4x10^-5</td>
<td>0.41</td>
<td>-0.001</td>
<td>0.044 0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Discovery meta-analysis | 10.768 | 0.091 | 0.018 | 3.3x10^-7 | -0.072 | 0.014 | 6.6x10^-7 | 0.070 | 0.015 | 1.4x10^-6 |

| Replication meta-analysis | 8.321 | 0.055 | 0.018 | 2.5x10^-3 | -0.058 | 0.015 | 8.3x10^-5 | 0.025 | 0.015 | 0.093 |

| Overall meta-analysis | 19.089 | 0.074 | 0.013 | 8.1x10^-9 | -0.065 | 0.010 | 2.8x10^-10 | 0.048 | 0.010 | 3.6x10^-6 |

MAF; Minor allele frequency, Se; standard error. Beta’s reflect difference in head circumference SD score per minor allele (additive model).
P-value is obtained from linear regression of the SNP against head circumference SD score (additive model). All study samples were of European descent.

Key to study names: ALSPAC (D), Avon Longitudinal Study of Parents and Children Discovery subset; CHOP, Children’s Hospital Of Philadelphia; COPSAC, Copenhagen Prospective Study on Asthma in Childhood; Generation R, the Generation R Study; LISA (D), Lifestyle – Immune System – Allergy Discovery subset; NFBC1966, Northern Finland Birth Cohort 1966; RAIN, The Western Australian INfancia y Medio Ambiente | Environment and Childhood | Project; GINI+LISA (R), German Infant Study on the influence of Nutrition Intervention Munich + Lifestyle – Immune System – Allergy Replication subset; NFBC1986, Northern Finland Birth Cohort 1986.
<table>
<thead>
<tr>
<th>Marker</th>
<th>Head circumference in third trimester of pregnancy (SD score)</th>
<th></th>
<th>Head circumference at birth (SD score)</th>
<th></th>
<th>Intra cranial volume (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total N</td>
<td>Beta</td>
<td>Se</td>
<td>P-value</td>
<td>Total N</td>
</tr>
<tr>
<td>rs7980687_A on 12q24</td>
<td>3,781</td>
<td>0.089</td>
<td>0.029</td>
<td>1.9×10^{-3}</td>
<td>17,330</td>
</tr>
<tr>
<td>rs1042725_T on 12q15</td>
<td>3,781</td>
<td>-0.075</td>
<td>0.023</td>
<td>9.9×10^{-4}</td>
<td>17,074</td>
</tr>
<tr>
<td>rs11655470_T on 17q21</td>
<td>3,781</td>
<td>0.049</td>
<td>0.024</td>
<td>0.037</td>
<td>17,695</td>
</tr>
</tbody>
</table>

SD; standard deviation, Se; standard error, Beta’s reflect difference in head circumference SD score per minor allele, or difference in intra cranial volume (ml) per minor allele (additive model). P-value is obtained from linear regression the SNP and sex against of head circumference SD score in fetal life (additive model); SNP, sex and gestational age at against birth head circumference SD score at birth (additive model); SNP, age and sex against Intra cranial volume (ml) (additive model)^2. All study samples were of European descent.

A variant further downstream (rs9915547; r^2 0.22 HapMap CEU) showed a genome-wide significant association (P=1.5×10^{-12}) with adult intra cranial volume.2